Folds and Origami in Design Disciplines
Abstract
This article presents the results of a workshop that took place during the Week of Art, Culture and Architecture in Universidad de América. In the first section Flat Origami is introduced, that is the variation of folded paper that we hace been working for the last 10 years. It is explained how the relationship with this techique was developed and we present the reader with some fold patterns to encourage experimentation. We strive to bring the reader to the different posibilities of origamis techniques. In the second section a wide range of examples in diverse design disciplines is presented.
References
Aslaksen, H. (2006). In Search of Demiregular Tilings. En R. Sarhangi, & J. Sharp, Bridges London: Mathematical Connections in Art, Music, and Science (págs. 533-536). Londres: Tarquin Books.
Bern, M., & Hayes, B. (1996). The complexity of flat origami. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (págs. 175-173). Philadelphia: Society for Industrial and Applied Mathematics.
Ciravegna, E. (2017). Diseño de packaging. Una aproximación sistémica a un artefacto complejo. RChD: Creación Y Pensamiento, 1-17.
Clemens, S., O´Daffer, P., & Cooney, T. (1998). Geometría. Pearson–Addison Wesley.
Ding, D., Zhang, F., Lan, S., Liu, Y., Li, S., Xie, X., & Chen, Y. (2013). Review of Materials
for Origami in Fashion Design. Advanced Materials Research, 821-822.
Hull, T. (1994). On the Mathematics of Flat Origamis. Congressus Numerantium, 215-224.
Justin, J. (1997). Towards a mathematical theory of origami. Origami Science and Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami (págs. 15-29). Otsu: Seian University of Art and Design.
Latchana, K. (2020). Foldign Tech: using origami an nature to revolutionize technology. Minneapolis: Twenty-First Century Books .
Mukerji, M. (2007). Marvelous modular origami. Natick: A K Peters.
Resch, R. (29 de Octubre de 1968). Estados Unidos Patente nº 3407558.
Simon, L., Arnstein, B., & Gurkewitz, R. (2012). Modular Origami Polyhedra: Revised and Enlarged Edition. Mineola: Dover Publications.
Steinhaus, H. (1999). Mathematical Snapshots. Mineola: Dover Publications.
Wells, D. (1991). The Penguin Dictionary of Curious and Interesting Geometry. Londres: Penguin.
Witt, A., & Pertigkiozoglou, E. (2019). Computation as design. Harvard University Graduate School of Design.
Zhao, Y., Endo, Y., Mitani, J., & Kanamori, Y. (2018). Approximating 3D surfaces using generalized waterbomb tessellations. Journal of Computational Design and Engineering, 442-448.
Downloads
Copyright (c) 2023 Arkitekturax Visión FUA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
| Article metrics | |
|---|---|
| Abstract views | |
| Galley vies | |
| PDF Views | |
| HTML views | |
| Other views | |







_8.41_.30_a_. m_._.png)