Nitrogen source effect on manganese peroxidase production from Pleurotus ostreatus and kinetic constants determination

Keywords: manganese peroxidase, Pleurotus ostreatus, kinetic characterization, liquid submerged fermentation, Panicum maximum

Abstract

The use of lignocellulosic residues for the production of molecules of interest, such as sugars and biofuels, also includes the synthesis of enzymatic complexes composed by oxidases capable of degrading aromatic and phenolic structures of a pollution nature in certain cases. This study evaluated the production of manganese peroxidase (MnP) in a liquid fermentation submerged by Pleurotus ostreatus using as substrate a forage grass. The highest levels of enzymatic activity (528.54 U/L) were obtained after twelve days of incubation and having as a nitrogen source peptone, at a carbon/nitrogen ratio equal to 10. In the cases in which the fermentation was supplemented with inorganic nitrogen sources, the enzymatic activity was lower.

References

Asgher, M.; Ramzan, M., and Bilal, M. (2016), Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL04, Chinese Journal of Catalysis, 37, 561-570.
Baborová, P. (2006), Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme, Research in Microbiology, 157, 248-253.
Baldrian, P.; Valásková, V.; Merhautová, V., and Gabriel, J. (2005), Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc, Research in Microbiology, 156, 670-676.
Bilal, M., and Asgher, M. (2015), Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase, BMC Biotechnology, 15(11), 1-14.
Bilal, M., and Asgher, M. (2016), Enhanced catalytic potentiality of Ganoderma lucidum IBL-05 manganese peroxidase immobilized on sol-gel matrix, Journal of Molecular Catalysis B: Enzymatic, 128, 82-93.
Chen, M.; Shanjing, Y.; Zhang, H., and Liang, X. (2010), Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii, Biotechnology and Bioengineering, 18(5), 824-829.
Elisashvili, V.; Penninckx, M.; Kachlishvili, E.; Asatiani, M., and Kvesitadze, G. (2006), Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermetation of mandarin peels and tree leaves, Enzyme and Microbial Technology, 38, 998-1004.
Ergun, S. O., and Urek, R. O. (2017), Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus, Annals of Agrarian Science, 15, 273-277.
Guio, F.; Rugeles, L. D.; Rojas, S. E.; Palomino, M. P.; Camargo, M. C., and Sánchez, O. F. (2012), Kinetic modelling of fructooligosaccharide production using Aspergillus oryzae N74, Applied Biochemistry and Biotechnology, 167(1), 142-163.
Heaton, E. A.; Flavell, R. B.; Mascia, P. N.; Thomas, S. R.; Dohlman, F. G., and Long, S. P. (2008), Herbaceous energy crop development: recent progress and future prospects., Current Opinion in Biotechnology, 19(3), 202-209.
Karigar, C. S., and Rao, S. S. (2011), Role of Microbial Enzymes in the Bioremediation of polluants: A Review, Enzyme Research, 1-11.
Kirk, T., and Farrel, R. (1987), Enzymatic "combustion": The microbial degradation of lignin, Annual Review of Microbiology, 41, 465-505.
Kong, W.; Chen, H.; Lyu, S.; Ma, F.; Yu, H., and Zhang, X. (2016), Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538, and its use for the degradation of lignin-related compounds, Process Biochemistry, 51, 1776-1783.
Lineweaver, H., and Burk, D. (1934), The determination of enzyme dissociation constants, Journal of the American Chemical Society, 56, 658-666.
Liu, J.; Zhang, S.; Shi, Q.; Kong, W.; Yu, H., and Ma, F. (2019), Highly efficient oxidation of synthetic and natural lignin-related compounds by Physisporinus vitreus versatile peroxidase, International Biodeterioration & Biodegradation, 136, 41-48.
Luan, P.; Jiang, Y.; Zhang, S.-P.; Gao, J.; Su, Z.-G.; Ma, G.-H., and Zhang, Y.-F. (2014), Chitosan-mediated formation of biomimetic silica nanoparticles: An effective method for manganese peroxidase immobilization and stabilization, Journal of Bioscience and Bioengineering, 118(5), 575-582.
Mielgo, I.; Palma, C.; Guisan, J. M.; Fernandez-Lafuente, R.; Moreira, M. T.; Feijo, G., and Lema, J. M. (2003), Covalent immobilization of manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55, Enzyme and Microbial Technology, 32, 769-775.
Morales-Fonseca, D. (2014), Producción de enzimas ligninolíticas a partir de biomasa de Panicum maximum por Pleurotus ostreatus, 117 pp, Universidad Nacional de Colombia, Bogota.
Morales-Fonseca, D., and Ruiz-Tovar, K. (2008), Determinación de la capacidad de remoción de cadmio, plomo y níquel, por hongos de la podredumbre blanca inmovilizados, 139 pp, Pontificia Universidad Javeriana, Bogotá.
Numir, N.; Asgher, M.; Tahir, I. M.; Riaz, M.; Bilal, M., and Ali Shah, S. M. (2015), Utilization of agro-wastes for production of lignilolytic enzymes in liquid state fermetation by Phanerochaete chrysosporium-Ibl-03, International Journal of Chemical and Biochemical Sciences, 7, 9-14.
Palma, C.; Martinez, A. T.; Lema, J. M., and Martinez, M. J. (2000), Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium, Journal of Biotechnology, 77, 235-245.
Quevedo-Hidalgo, B. (2011), Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos, 178 pp, Universidad Nacional de Colombia, Bogota.
Quevedo-Hidalgo, B.; Narvaez-Rincon, P. C.; Pedroza-Rodriguez, A. M., and Velásquez-Lozano, M. E. (2012), Degradation of Chrysanthemum (Dendranthema grandiflora) wastes by Pleurotus ostreatus for the production of reducing sugars, Biotechnology and Bioengineering, 17, 1103-1112.
Santoyo, F.; Gonzalez, A.; Terron, M.; Ramírez, L., and Pisabarro, A. (2008), Quantitative linkage mapping of lignin-degrading activities in Pleurotus ostreatus, Enzyme and Microbial Technology, 43(2), 137-143.
Sasaki, T.; Kajino, T.; Sugiyama, H., and Takahashi, H. (2001), New pulp biobleanching system involving Manganese Peroxidase immobilized in a silica support with controlled pore sizes, Applied and Environmental Microbiology, 67(5), 2208-2212.
Stajic, M.; Persky, L.; Friesem, D.; Hadar, Y.; Wasser, S. P.; Nevo, E., and Vukojevic, J. (2006), Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species, Enzyme and Microbial Technology, 38, 65-73.
How to Cite
Morales Fonseca, D. M., & Velásquez-Lozano, M. E. (2019). Nitrogen source effect on manganese peroxidase production from Pleurotus ostreatus and kinetic constants determination . Revista De Investigación, 12(1), 9–18. https://doi.org/10.29097/2011-639X.227

Downloads

Download data is not yet available.
Published
2019-08-30
Section
Artículos de Investigación
Crossref Cited-by logo