Programming by Imitation: A Learning Approach to Systems Engineering
Abstract
This article describes the parallel comparative results of a study conducted in the Systems Engineering degree with simultaneous Programming groups (per semester). With one group, learning was adopted from codes already published and in operation; with the other, the traditional methodology of teaching programming through lectures was applied. This study was implemented with 16 programming groups during the years 2016, 2017, 2018 and 2019. The methodology was adjusted to a comparative case study, so that in each semester the results of the work with codes already written were analyzed in comparison with the results of groups that did the same but with codes written by the same students. The parallel courses were of different subjects. The quantitative results allowed qualitative inferences to be made in relation to learning through observation and direct interaction with students. The conclusion is that when the student has the appropriate knowledge base, the support provided by properly codified programs seems to accelerate and solidify the learning process with meaning, relevance and connectivity facilities.
References
Ausubel, D. (2012). The Acquisition and Retention of Knowledge. Springer.
Aznawarian, L. (2017). Conectivismo: una teoría del aprendizaje en la era digital. Editorial Académica Española.
Basogain, X., Olabe, M., y Olabe, J. (septiembre de 2015). Pensamiento computacional a través de la programación: paradigma de aprendizaje. Revista de Educación a Distancia, 46(6), 2-35.
Boyer, C. (2010). Historia de la Matemática. Madrid, España: Alianza Editorial.
Bruner, J. (2009). Actos de significado. Alianza Editorial.
Campillay, S., y Meléndez, S. (abril de 2015). Análisis de impacto de metodología activa y aprendizaje heurístico en asignaturas de Ingeniería. Actualidades Investigativas en Educación, 15(2). DOI: https://doi.org/10.15517/aie.v15i2.18950
Coelho, M., et al (2018). Teorias da aprendizagem: o conectivismo presente na modalidade de ensino semipresencial. Novas Edicioes Académicas.
Denning, P., y Tedré, M. (2019). Computational Thinking. The MIT Press. DOI: https://doi.org/10.7551/mitpress/11740.001.0001
Diaz, F., y Hernández, G. (2002). Estrategias docentes para un aprendizaje significativo. McGraw Hill.
Felleisen, M., et al. (2005). How to Design Programs. MIT Press.
Ministerio de Tecnologías de la Información y Comunicaciones. (2018). Informe de Gestión Año 2018. MinTIC.
Osa, T., y Pajarinen, J. (2018). An Algorithmic Perspective on Imitation Learning. Now Publishers. DOI: https://doi.org/10.1561/9781680834116
Rey, J., y Pastor, J. (2013). Historia de la Matemática Vol. II. Gedisa.
Small, G. (2009). Digital Brain. Urano.
Trejos, O. (2000). La esencia de la lógica de programación. Centro Editorial Universidad de Caldas.
Trejos, O. (2012). Significado y competencias. Editorial Papiro.
Trejos, O. (2017). Lógica de programación. Ediciones de la U.
Trejos, O. (febrero de 2017). Metodología para aprender programación funcional en Ingeniería de Sistemas, aplicando teoría de aprendizaje por descubrimiento. Revista Educación en Ingeniería, 12(23), 69-75. DOI: https://doi.org/10.26507/rei.v12n23.719
Trejos, O. (2017). Programación imperativa con lenguaje C. ECOE Ediciones.
Wing, J. (Marzo de 2006). Computational Thinking. Communications on the ACM, 49(3), 33-35. DOI: https://doi.org/10.1145/1118178.1118215








