Exploitation of phosphoric rock by thermal means to obtain thermophosphates
Abstract
This work intends to document the use of phosphoric rock to obtain thermophosphates, from phosphorus sources, from the municipalities of Iza and Sogamoso, Boyacá. The IFA report indicates that the global demand for fertilizers in relation to P2O5 was 45,4 Mt in 2019, and the prospects for phosphates to obtain products could reach 112 Mt by 2022. To achieve this purpose, the method of calcination in an electric oven is reported as one of the most common techniques for the concentration of P2O5. In this sense, a design of factorial experiments 23 was applied, with two levels (low and high) and three factors: temperature (900°C and 1200°C), calcination time (3 and 5 hours) and source of the mineral (RFIZA and RFPC); the particle size (≤0,149 mm) remains constant. The results obtained show an increase in phosphorus concentration in the processed samples, especially those that were subject of higher calcination times and higher temperatures.
References
Abouzeid, A. Z. (2008). Physical and Thermal Treatment of Phosphate ores — An Overview. International Journal of Mineral Processing, 85(4), 59-84. doi.org/10.1016/j.minpro.2007.09.001 DOI: https://doi.org/10.1016/j.minpro.2007.09.001
Aissa , A., Abdeen , A., & Abualreish , M. (2014). Qualitative and Quantitative Analysis of Phosphate Rock from Hazm Al-jalamid Area, Northern Saudi Arabia. International Journal of Basic and Applied Sciences, 3(3), 190-198. doi.org/10.14419/ijbas.v3i3.2755 DOI: https://doi.org/10.14419/ijbas.v3i3.2755
Bachouâ , H., Othmani, M., Coppe, Y., Fatteh, N., Debbabi, M., & Badraoui, B. (2014). Structural and Thermal Investigations of a Tunisian Natural Phosphate Rock. Journals materials and environmental science, 5(4), 1152-1159.
Bernal Gaona, S. (2013). Estudio de la calidad de recubrimientos de hidroxiapatita sobre acero inoxidable implantable aplicados mediante proyección térmica con plasma (Tesis Magister en Materiales y Procesos). Universidad Nacional de Colombia, Bogotá D.C.
Blazy, P., & Bouhaouss, A. (2005). Removal of Organic Matter in Moroccan Youssoufia Phosphate by Flash Calcination. Minerals and Metallurgical Processing, 22, 107-115. DOI: https://doi.org/10.1007/BF03403123
Bojinova, D. (2003). Thermal Treatment of Mixtures of Tunisian Phosphorite and Additives of Aluminum Silicate. Thermochimica Acta, 404(1-2), 155-162. doi.org/10.1016/S0040-6031(03)00145-X DOI: https://doi.org/10.1016/S0040-6031(03)00145-X
Calle Castañeda, M. S. (2016). Evaluación de la acidulación de roca fosfórica empleando la bacteria acidófila Acidithiobacillus thiooxidans (Tesis Magister en Materiales y Procesos). Universidad Nacional de Colombia, Medellín.
El Ouardi, E. M. (2013). Effect of Temperature and Residence Time of Calcination Phosphate on the Chemical Reactivity: Application to the Case of Bouchane Phosphate (Morocco). International Journal of Innovation and Applied Studies, 4(2), 387-407.
Elgharbi, S., Horchani-Naifer, K., & Férid, M. (2015). Investigation of the Structural and Mineralogical Changes of Tunisian Phosphorite during Calcinations. Journal of Thermal Analysis and Calorimetry, 119(1), 265. DOI: https://doi.org/10.1007/s10973-014-4132-5
El-Midany, A., El-Aleem, F., & Al-Fariss, T. (2013). Why do Relatively Coarse Calcareous Phosphate Particles Perform Better in a Static-bed Calciner? Powder Technology, 237, 180–185. DOI: https://doi.org/10.1016/j.powtec.2013.01.035
Fahami, A., Bahman, N. T., & Reza, E. K. (2013). Mechanosynthesis and Characterization of Chlorapatite Nanopowders. Materials Letters, 110, 117-121. doi.org/10.1016/j.matlet.2013.08.012 DOI: https://doi.org/10.1016/j.matlet.2013.08.012
Fernandez, S., y Noguera, R. (2003). Producción de fosfatos térmicos a partir de rocas fosfóricas nacionales. Agronomía Tropical, 53(1), 49-57.
Georecursos (2005). Análisis de la estructura productiva y mercados de la roca fosfórica. Georecursos.
International Fertilizer Association (2019). Short Term Fertilizer Outlook, IFA Strategic Forum. International Fertilizer Association.
Kijkowska, R., Lin, S., & Legeros, R. Z. (2002). Physico-Chemical and Thermal Properties of Chlor-, Fluor- and Hydroxyapatites. Key Engineering Materials, 218-220, 31-34. doi.org/10.4028/www.scientific.net/KEM.218-220.31
Legeros, R. Z., Ito, A., Ishikawa, K., Sakae, T., & Legeros, J. P. (2009). Fundamentals of Hydroxyapatite and Related Calcium Phosphates. En B. Basu, D. S. Katti & A. Kumar (eds.), Advanced Biomaterials: Fundamentals, Processing, and Applications (pp. 19-52). John Wiley. doi.org/10.1002/9780470891315.ch2 DOI: https://doi.org/10.1002/9780470891315.ch2
Levingstone, T. J. (2008). Optimisation of Plasma Sprayed Hydroxyapatite Coatings (Tesis). Dublin City University, Ireland.
Norma Técnica Colombiana [NTC 234] (2001). Abonos o fertilizantes. Métodos de ensayo para la determinación cuantitativa de fósforo. Icontec.
Peña Urueña, M. L. (2011). Caracterización de cenizas de algunos carbones colombianos in situ, por retrodispersión gamma-gamma. Universidad Nacional de Colombia.
Shariati, S., Ramadi, A., & Salsani, A. (2015). Beneficiation of Low-Grade Phosphate Deposits by a Combination of Calcination and Shaking Tables: Southwest Iran. Minerals, 5, 367-379. doi:10.3390/min5030367 DOI: https://doi.org/10.3390/min5030367
Straaten, P. V. (2002). Rocks for Crops, Agrominerals of Sub-Saharan Africa. Icraf.
Tõnsuaadu, K., Gross, K. A., Pluduma, L., & Veiderma, M. (2012). A Review on the Thermal Stability of Calcium Apatites. Journal of Thermal Analysis and Calorimetry, 110, 647-659. doi.org/10.1007/s10973-011-1877-y DOI: https://doi.org/10.1007/s10973-011-1877-y
Van Kauwenbergh, S. J. (2010). World Phosphate Rock Reserves and Resources. Muscle Shoals, IFDC. Recuperado de: https://pdf.usaid.gov/pdf_docs/Pnadw835.PDF








