Analysis of the Van der Waals cubic equation of state: from classical thermodynamics to statistics

Keywords: vapor-liquid equilibria, statistical thermodynamics, cubic equation of state, Van der Waals, ensemble, partition function

Abstract

Nowadays, vapor-liquid equilibrium in chemical engineering is commonly studied and tested by using simulation software that allows engineers to build up designs, advances and new researches avoiding the thrilling molecular thermodynamic analysis from its foundations, because computing packages such as Aspen® or CHEMCAD® have already included the most of the available equations of state (EoS), which suit depending on the studied system. Nevertheless, the major development of new and better correlations to predict and subsequently model the vapor-liquid equilibrium could be halted by the recent computational chemical engineering, for that reason, in this paper, a procedural demonstration of how the Van der Waals (VdW) equation —the most famous and resulting EoS for years— is stated and developed from the point of view of both classic and statistical thermodynamics. A detailed phenomenological and mathematical description is showed, including a numerical case of study.

Author Biography

Sebastián Gómez Páez, Universidad Nacional de Educación a Distancia, España

Ingeniero Químico, Fundación Universidad de América, Bogotá D. C., Colombia; estudiante de maestría en Ciencias y Tecnología química, UNED, España.

References

Atkins, P. W. & De Paula, J. (2017). Química Física (8th edition). Buenos Aires: Médica Panamericana.

Callen, H. B. (1998). Thermodynamics and an Introduction to Thermostatistics (3rd edition). USA: Wiley.

Chen, H., Cai, D., Chen, C., Wang, J., Qin, P. & Tan, T. (2018). Novel distillation process for effective and stable separation of high-concentration acetone–butanol–ethanol mixture from fermentation–pervaporation integration process. Biotechnology for Biofuels, 11(1), 286. DOI: https://doi.org/10.1186/s13068-018-1284-8 DOI: https://doi.org/10.1186/s13068-018-1284-8

Greiner, W., Neise, L. & Stöcker, H. (1995). Thermodynamics and Statistical Mechanics (1st edition). New York: Springer. doi:10.1007/978-1-4612-0827-3 DOI: https://doi.org/10.1007/978-1-4612-0827-3

Ibrahim, M., Skaugen, G., Ertesvåg, I. S. & Haug-Warberg, T. (2014). Modeling CO2–water mixture thermodynamics using various equations of state (EoSs) with emphasis on the potential of the SPUNG EoS. Chemical Engineering Science, 113, 22-34. DOI: https://doi.org/10.1016/j.ces.2014.03.025 DOI: https://doi.org/10.1016/j.ces.2014.03.025

Kontogeorgis, G. M. & Folas, G. K. (2009). Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories (1st edition). USA: Wiley Online Library.

Kontogeorgis G. & Economou, I. G. (2010). Equations of state: From the Ideas of Van der Waals to association theories. The Journal of Supercritical Fluids, 55(2), 421-437. DOI: https://doi.org/10.1016/j.supflu.2010.10.023 DOI: https://doi.org/10.1016/j.supflu.2010.10.023

Kraemer, K., Harwardt, A., Bronneberg, R. & Marquardt, W. (2011). Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process. Computers & Chemical Engineering, 35(5), 949-963. DOI: https://doi.org/10.1016/j.compchemeng.2011.01.028 DOI: https://doi.org/10.1016/j.compchemeng.2011.01.028

Laurendeau, N. M. (2005). Statistical Thermodynamics: Fundamentals and Applications (1st edition) Indiana: Cambridge MA. DOI: https://doi.org/10.1017/CBO9780511815928

Leon, J. A., Palacios-Bereche, R. & Nebra, S. A. (2016). Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage. Energy, 109, 77-91. DOI: https://doi.org/10.1016/j.energy.2016.04.088 DOI: https://doi.org/10.1016/j.energy.2016.04.088

McQuarrie, D. (1977). Statistical Mechanics (1st edition). New York: Harper & Row.

Niesbach, A., Fink, N., Lutze, P. & Górak, A. (2015). Design of reactive distillation processes for the production of butyl acrylate: Impact of bio-based raw materials. Chinese Journal of Chemical Engineering, 23(11), 1840-1850. DOI: https://doi.org/10.1016/j.cjche.2015.08.019 DOI: https://doi.org/10.1016/j.cjche.2015.08.019

Poling, B. E., Prausnitz, J. M. & O'Connell, J. P. (2001). The Properties of Gases and Liquids (5th edition). New York, USA: Mc-Graw.

Prausnitz, J. M., Lichtenthaler, R. N. & de Azevedo, E. G. (1998). Molecular Thermodynamics of Fluid-phase Equilibria (3rd edition). New Jersey: Pearson Education.

Seader, J. D., Henley, E. J. & Roper, D. K. (2011). Separation Process Principles (3rd edition). USA: Wiley.

Sesé, S. L. M. & Criado, S. M. (1990). Termodinámica química molecular (1st edition). Madrid: UNED.

Toikka, A., Naumkin, P. & Penkova, A. (2015). Approximation and analysis of pervaporation of binary mixtures using nonequilibrium thermodynamics approach. Chemical Engineering Research and Design, 104, 669-680. DOI: https://doi.org/10.1016/j.cherd.2015.10.007 DOI: https://doi.org/10.1016/j.cherd.2015.10.007

Walas, S. M. (2013). Phase Equilibria in Chemical Engineering (1st edition). Oxford: Butterworth-Heinemann. DOI: https://doi.org/10.1016/C2013-0-04304-6 DOI: https://doi.org/10.1016/C2013-0-04304-6

Yokoyama, C., Arai, K. & Saito, S. (1984). Calculation of high-pressure vapor-liquid equilibria of non-polar asymmetric mixtures with an augmented Van der Waals’ equation of state. Journal of Chemical Engineering of Japan, 17(2), 109-113. https://doi.org/10.1252/jcej.17.109 DOI: https://doi.org/10.1252/jcej.17.109

How to Cite
Gómez Páez, S. (2020). Analysis of the Van der Waals cubic equation of state: from classical thermodynamics to statistics. Revista De Investigación, 12(2), 201–211. https://doi.org/10.29097/2011-639X.299

Downloads

Download data is not yet available.
Published
2020-08-19
Section
Conceptos metodológicos en Ingeniería
Crossref Cited-by logo