Prefeasibility for Obtaining Isobutane and Propane Via Petroleum Extraction Gases in Colombia
Abstract
Isobutane and propane obtained from natural gas and liquefied petroleum gas (LPG) can be used to replace synthetic refrigerants, reducing emissions of ozone-depleting gases that generate global warming. For this reason, a simulation was carried out using Aspen HYSYS to corroborate that it is possible to obtain isobutane and propane at 99.5% purity. Properties of natural gas and LPG were analyzed with gas chromatography provided by Gas Natural Fenosa and Almagas, taking the lowest average of isobutane and propane data to determine the purity of each of the compounds to be obtained. Using PUGH analysis, four methods were selected: direct, indirect, inorganic porous membranes, and fixed adsorption bed to analyze the separation of isobutane and propane at 99,5% purity with natural gas and LPG. Finally, the conceptual engineering of the separation was carried out with the simulation in Aspen HYSYS V 9.0, obtaining 99.5% propane, 49.62% isobutane, and 49.38% n-butane in purity, when using natural gas, which is composed of methane (CH4) in a volume of 84%, ethane (C2H6) at 3-8%, propane (C3H6) 1-2%, and butane (C4H10) less than 1%. Small amounts of heavier compounds such as hexane (C6H14), heptane (C7H16), and octane (C8H18) were also observed with a volume percentage lower than 1%. Additionally, some impurities were found in this gas such as carbon dioxide (CO2) with 1-2%, hydrogen sulfide (H2S) with less than 1%, and nitrogen (N2) with 1%, 99.9% propane, 1.98% isobutane, and 97.45% n-butane. LPG is composed of nitrogen (N2) at 0,05%, ethane (C2H6) at 2.07%, propane (C3H8) at 66.65%, isobutane (i-C4H10) at 16.46%, n-butane (n-C4H10) at 14.87%, and isopentane (i-C5H12).
References
Fronti de García, L., Fernández Cuesta, C. (2007). El Protocolo de Kioto y los costos ambientales. Revista del Instituto Internacional de Costos, No. 1, enero-febrero 2007, pp. 9-31. http://www.revistaiic.org/articulos/num1/articulo1_esp.pdf
Hamid, M. K. (2007). HYSYS®: An Introduction to Chemical Engineering Simulation. Universiti Teknologi Malaysia. http://eprints.utm.my/id/eprint/3030/2/HYSYS_for_UTM_Degree%2B%2B_Program.pdf
Ley 1970 de 2019. Por medio de la cual se aprueba la “Enmienda de Kigali al Protocolo de Montreal”, adoptada el 15 de octubre de 2016 en Kigali, Ruanda. 12 de julio de 2019. D. O. No. 51.012.
Maldonado, R., Ángulo, A., Cival, K., García, R., Suárez, M. (2013). Procesos para purificación de propano como refrigerantes R290. Revista de la Facultad de Ingeniería U. C. V, 29(1), pp. 101-114. http://ve.scielo.org/pdf/rfiucv/v29n1/art12.pdf
Organización de la Naciones Unidas, (ONU) (2015). Convención Marco sobre el Calentamiento Climático. ONU. https://unfccc.int/resource/docs/2015/cop21/spa/l09s.pdf
Secretaría del Convenio de Viena para la Protección de la Capa de Ozono, Protocolo de Montreal relativo a las sustancias que agotan la capa de ozono, Programa de las Naciones Unidad para el Medio Ambiente. (2009). Manual del Protocolo de Montreal relativo a las sustancias que agotan la capa de ozono. Programa de las Naciones Unidas para el Medio Ambiente. https://www.car.gov.co/uploads/files/5b59e47ccaaae.pdf
Wikispaces (2017). Modelos de Hysys. https://simulacionprocesos.wikispaces.com/Modelos+del+Hysys








